Systems of Linear Equations (SLE)

In mathematics, a **system of linear equations** (or **linear system**) is a collection of one or more linear equations involving the same set of variables.

Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer science, and economics.

Examples:
$$\begin{cases} x + 2y + z = 6\\ 5x + 3y - z = 7\\ 2x - y + z = 2 \end{cases}$$

General form
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1\\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2\\ \vdots\\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_n \end{cases}$$

Where $x_1, x_2, ..., x_n$ are the unknowns, $a_{11}, a_{12}, ..., a_{mn}$ are the coefficients of the system, and $b_1, b_2, ..., b_m$ are the constant terms.

The system of linear equations is equivalent to a matrix equation of the form Ax = bwhere A is an $m \times n$ matrix, x is a column vector with n entries, and b is a column vector with m entries.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \ x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ and } b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Solution of (SLE)

Gaussian elimination

Gaussian elimination, also known as **row reduction**, is an algorithm in linear algebra for solving a system of linear equations.

Example:

Given equations are

6x + 3y + 2z = 6	(i)
6x + 4y + 3z = 0	(ii)
20x + 15y + 12z = 0	(iii)

To eliminate x, we are operating (ii) – (i), (iii) $-\frac{20}{6}$ (i), we obtain 6x + 3y + 2z = 6...(i) y + z = -6...(iv) $5y + \frac{16}{3}z = -20$...(v) To eliminate y, we are operating (v) - 5 (iv), we get 6x + 3y + 2z = 6...(i) y + z = -6...(iv) $\frac{1}{3}z = 10$...(vi) From equation (vi), we get z = 30Putting z = 30 in equation (iv), we get y + 30 = -6y = -6 - 30or = - 36 or Putting y = -36, z = 30 in equation (i), we obtain 6x + 3(-36) + 2(30) = 66x - 108 + 60 = 66x = 6 + 108 - 606x = 54 $\mathbf{x} = \mathbf{9}$ Hence x = 9, y = -36, z = 30Ans.

Example: Solve the SLE
$$\begin{cases} 6x_1 - 2x_2 + 2x_3 + 4x_4 = 16\\ 12x_1 - 8x_2 + 6x_3 + 10x_4 = 26\\ 3x_1 - 13x_2 + 9x_3 + 3x_4 = -19\\ -6x_1 + 4x_2 + x_3 - 18x_4 = -34 \end{cases}$$

Solution:

Solution:
eliminate
$$x_1$$
:
$$\begin{cases} 6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 \text{ does not change} \\ -4x_2 + 2x_3 + 2x_4 = -6 \\ -12x_2 + 8x_3 + x_4 = -27 \\ 2x_2 + 3x_3 - 14x_4 = -18 \end{cases}$$
$$\begin{cases} Applying \\ R'_2 = R_2 - 2R_1 \\ R'_3 = R_3 - \frac{1}{2}R_1 \\ R'_4 = R_4 + R_1 \end{cases}$$

eliminate
$$x_2: \sim \begin{cases} 6x_1 - 2x_2 + 2x_3 + 4x_4 = 16 & \text{does not change} \\ -4x_2 + 2x_3 + 2x_4 = -6 & \text{does not change} \\ 2x_3 - 5x_4 = -9 \\ 4x_3 - 13x_4 = -21 \end{cases}$$
 $R'_4 = R_4 - \frac{1}{2}R_2$

	$6x_1 - 2x_2 + 2x_3 + 4x_4 = 16$ does not change	Applying
eliminate $x_3 : \sim $	$-4x_2 + 2x_3 + 2x_4 = -6$ does not change	$R_4' = R_4 - 2R_3$
	$2x_3 - 5x_4 = -9$ does not change	
	$-3x_4 = -3$	

Then the linear system become

$$\begin{cases} 6x_1 - 2x_2 + 2x_3 + 4x_4 = 16\\ -4x_2 + 2x_3 + 2x_4 = -6\\ 2x_3 - 5x_4 = -9\\ -3x_4 = -3 \end{cases}$$

Then by back-substitution method we have $x_1 = 3$, $x_2 = 1$, $x_3 = -2$, $x_4 = 1$

	Exercise : Gauss-Elimination	
(i) $10x + y + z = 12 x + 10y + z = 12 x + y + 10z = 12$		(ii) $x + 3y + 10z = 24$ $2x + 17y + 4z = 35$ $28x + 4y - z = 32$